STA301 ASSIGNMEN NO. 2 Spring 2022 Solution



 

STA301

ASSIGNMEN NO. 2

Spring 2022

Due Date: 30 – 8 - 2022

QUESTION NO. 1:-

Let X be a continuous random variable whose probability density function is:

f\left( x \right) = \frac{{{x^3}}}{4}

SOLUTION:-

Given that:-

               f\left( x \right) = \frac{{{x^3}}}{4}

The function f\left( x \right) will be a density function, if:

(i)    f\left( x \right) > 0\,\,for\,\,every\,\,x. 

(ii)    \int\limits_{ - \infty }^\infty  {f\left( x \right)dx = 1}

The first condition is satisfied when, x > 0.

          \int\limits_{ - \infty }^\infty  {f\left( x \right)dx = 1}

          \int\limits_0^c {\frac{{{x^3}}}{4}dx = 1}

          \frac{1}{4}\int\limits_0^c {{x^3}dx = 1}

          \frac{1}{4}\left[ {\left| {\frac{{{x^{3 + 1}}}}{{3 + 1}}} \right|_0^c} \right] = 1

          \frac{1}{4}\left[ {\left| {\frac{{{x^4}}}{4}} \right|_0^c} \right] = 1

          \frac{1}{4}\left[ {\frac{{{{\left( c \right)}^4}}}{4} - \frac{{{{\left( 0 \right)}^4}}}{4}} \right] = 1

          \frac{1}{4}\left[ {\frac{{{c^4}}}{4}} \right] = 1

          \frac{{{c^4}}}{{16}} = 1

           {c^4} = 16

          {c^4} = {2^4}

          c = 2

QUESTION NO. 2:-

From the following joint p.d of X and Y. Find E(X), Var(Y) and Cov(X,Y).

X

Y

0

1

2

3

g(X)

0

0

0.25

0.05

0.05

0.35

1

0.03

0.10

0.10

0.15

0.38

2

0.07

0.10

0

0.10

0.27

h(y)

0.10

0.45

0.15

0.30

1


SOLUTION:-


Given that:

X

Y

0

1

2

3

g(X)

0

0

0.25

0.05

0.05

0.35

1

0.03

0.10

0.10

0.15

0.38

2

0.07

0.10

0

0.10

0.27

h(y)

0.10

0.45

0.15

0.30

1

 

E(X) =?

Var(Y) =?

Cov(X,Y) =?

Now,

We know that:-

Formula:

E\left( X \right) = \sum {Xig\left( {Xi} \right)}

           = \left( {0 \times 0.35} \right) + \left( {1 \times 0.38} \right) + \left( {2 \times 0.27} \right)

          = 0 + 0.38 + 0.54

E\left( X \right)\,\,\,\,\,\,\, = \,\,0.92

Now,

We know that:-

Formula:

E\left( Y \right) = \sum {Yjh\left( {Yj} \right)}

          = \left( {0 \times 0.10} \right) + \left( {1 \times 0.45} \right) + \left( {2 \times 0.15} \right) + \left( {3 \times 0.30} \right)

          = 0 + 0.45 + 0.30 + 0.90

E\left( Y \right) = 1.65

Now,

We know that:-

Formula:

E\left( {{Y^2}} \right) = \sum {{Y^2}jh\left( {Yj} \right)}

             = \left( {0 \times 0.10} \right) + \left( {1 \times 0.45} \right) + \left( {4 \times 0.15} \right) + \left( {9 \times 0.30} \right)

            = 0 + 0.45 + 0.60 + 2.70

E\left( {{Y^2}} \right) = 3.75

Now,

We know that:-

Formula:

Var\left( Y \right) = \left[ {E\left( {{Y^2}} \right)} \right] - {\left[ {E\left( Y \right)} \right]^2}

              = \left( {3.75} \right) - {\left( {1.65} \right)^2}

              = 3.75 - 2.7225

Var\left( Y \right) = 1.0275

And

We know that:-

Formula:

E\left( {XY} \right) = \sum {\sum {\left( {{x_i}{y_j}} \right)f\left( {{x_i}{y_j}} \right)} }

E\left( {XY} \right) =[{\left( {0 \times 0 \times 0} \right) + \left( {0 \times 1 \times 0.25} \right) + \left( {0 \times 2 \times 0.05} \right) + }{\left( {0 \times 3 \times 0.05} \right) + \left( {1 \times 0 \times 0.03} \right)}+{\left( {1 \times 1 \times 0.10} \right)}

                  +{\left( {1 \times 2 \times 0.10} \right)}{ + \left( {1 \times 3 \times 0.15} \right) + \left( {2 \times 0 \times 0.07} \right) + \left( {2 \times 1 \times 0.10} \right)}{ + \left( {2 \times 2 \times 0} \right) + \left( {2 \times 3 \times 0.10} \right)}]

E\left( {XY} \right) = 0 + 0 + 0 + 0 + 0 + 0.10 + 0.20 + 0.45 + 0 + 0.20 + 0.60

E\left( {XY} \right) = 1.55

We know that:-

Formula:

Cov\left( {x,y} \right) = \left[ {E\left( {XY} \right)} \right] - \left[ {E\left( X \right)E\left( Y \right)} \right]

                  = \left( {1.55} \right) - \left( {0.92 \times 1.65} \right)

                  = 1.55 - 1.518

Cov\left( {x,y} \right) = 0.032











Post a Comment

Previous Post Next Post