MH644 ASSIGNMENT NO. 4 SPRING 2022 SOLUTION

 

MTH644

ASSIGNMENT NO. 4

SOLUION:-

Problem:

Let,

A \subseteq R  such that m(A) = 0. If A is bounded then show that the set B = \left\{ {{x^2}|x \in A} \right\} is lebesgue measurable and m(B) = 0.

Let,

A \subseteq R such that m(A) = 0.

If A is bounded we have to show that B = \left\{ {{x^2}|x \in A} \right\} is lebesgue measurement and m(B) = 0.

For,

Lebesgue measure

Any set  E \subseteq m  is defined to be lebesgue outer measure.

{m^ * } = m

For a class A,

{m^ * }\left( A \right) = {m^ * }\left( {A \cap F} \right) + {m^ * }\left( {A \cap {F^ * }} \right)

For non – empty measurable set.

f:E \to \left[ { - \infty ,\infty } \right]

 = \left\{ {x|x \in E:f\left( x \right) > c} \right\} \in m\left( R \right)\forall c \in R

f:E \to \left[ { - \infty ,\infty } \right]\,\,as\,\,B = f\left( x \right) = {x^2}\forall x \in R

\left\{ {x \in R:f\left( x \right) > c} \right\} = \left\{ {x \in R:{x^2} \ge c} \right\}

\left( { - \infty ,c} \right) \cup \left( {c,\infty } \right) \in m\left( R \right)

\left\{ {x \in R:{x^2} > 1} \right\} = \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)


 \,fis lebesgue measure.


Post a Comment

Previous Post Next Post