ASSIGNMENT NO. 1:- STA301 SPRING 2022 DUE DATE: JUNE 25, 2022



STA301

SPRING 2022

DUE DATE: JUNE 25, 2022

QUESTION NO. 1:-

From the given data, calculate regression equation X on Y taking deviation from mean.

X

2

5

3

7

6

Y

8

3

1

4

2

SOLUTION:-

We know that:

         \begin{array}{l}
 X\limits^ \wedge   = a + bY\\
\left( {X -  X\limits^ -  } \right) = {b_{xy}}\left( {Y -  Y\limits^ -  } \right)
\end{array}

Formula:-

{b_{xy}} = \frac{{\sum \left( {X -  X\limits^ -  } \right)\left( {Y -  Y\limits^ -  } \right)}}{{\sum {{\left( {Y =  Y\limits^ -  } \right)}^2}}}

     \,\,\, = \frac{{\sum \left( {xy} \right)}}{{\sum {y^2}}}
\left( {X -  X\limits^ -  } \right) = {b_{xy}}\left( {Y -  Y\limits^ -  } \right)

X

Y

x = \left( {X -  X\limits^ -  } \right)

y = \left( {Y -  Y\limits^ -  } \right)

xy

y2

2

8

-2.6

4.4

-11.44

19.36

5

3

0.4

-0.6

-0.24

0.36

3

1

-1.6

-2.6

4.16

6.76

7

4

2.4

0.4

0.96

0.16

6

2

1.6

-1.6

-2.24

2.56

\sumx = 23

\sumy = 18

\sum \left( {X -  X\limits^ -  } \right)= 0

\sum\left( {Y -  Y\limits^ -  } \right)= 0

\sumxy = -8.8

\sumy2= 29.2


   X\limits^ -   = \frac{{\sum X}}{n}\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\, Y\limits^ -   = \frac{{\sum Y}}{n}\,\,\,\,

        = \frac{{23}}{5}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{18}}{5}\,\,

       = 4.6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3.6

\left( {X -  X\limits^ -  } \right) = {b_{xy}}\left( {Y -  Y\limits^ -  } \right)

\left( {X - 4.6} \right) = \frac{{ - 8.8}}{{29.2}}\left( {Y = 3.6} \right)

X - 4.6 =  - 0.3014Y + 1.08504

X =  - 0.3014Y + 1.08504 + 4.6

X =  - 0.3014Y + 5.68504

X = 5.68504 - 0.3014Y
                          QUESTION NO. 2

From the given data, find standard error of estimate for regression equation Y on X.

X

5

7

2

9

3

8

Y

4

6

3

1

5

2

                          SOLUTION:-

We know that:-

Standard error Formula:

                                 {S_{yx}} = \sqrt {\frac{{\sum {Y^2} - a\sum Y - b\sum XY}}{{n - 2}}}

X

X2

Y

Y2

XY

5

25

4

16

20

7

49

6

36

42

2

4

3

9

6

9

81

1

1

9

3

9

5

25

15

8

64

2

4

16

\sumX = 34

\sumX2 = 232

\sumY = 21

\sum Y2= 91

\sumXY = 108


Formula:-

\sum Y = na + b\sum X\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sum XY = a\sum X + b\sum {X^2}

21 = 6a + 34b\,\,\,\, \to \left( 1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,108 = 34a + 232b\,\,\,\,\, \to \left( 2 \right)

From eq. (1).

21 = 6a + 34b

6a + 34b = 21

6a = 21 – 34b

a = \frac{{21 - 34b}}{6}                  \to (i)

From eq. (2).

108 = 34a + 232b

34a + 232b = 108

Putting the value  a = \frac{{21 - 34b}}{6} in eq. (2)

Putting the value a = \frac{{21 - 34b}}{6} in eq. (2).

34\left( {a = \frac{{21 - 34b}}{6}} \right)+ 232b = 108

\left( {\frac{{714 - 1156b}}{6}} \right)+ 232b = 108

Taking both side multiply by 6.

6\left( {\frac{{714 - 1156b}}{6}} \right)+ 6(232b) = 6(108)

714 – 1156b + 1392b = 648

236b = 648 – 714

236b = -66

b = \frac{{ - 66}}{{236}}

b = - 0.2797 

Putting the value b = - 0.2797 in eq. (i).

{a = \frac{{21 - 34b}}{6}}

a = \frac{{21 - 34( - 0.2797)}}{6}

a = \frac{{21 + 9.5098}}{6}

a = \frac{{30.5098}}{6}

a = 5.085

Taking put the value of a and b.

{S_{yx}} = \sqrt {\frac{{\sum {Y^2} - a\sum Y - b\sum XY}}{{n - 2}}}

{S_{yx}} = \sqrt {\frac{{91 - \left( {5.085} \right)\left( {21} \right) - \left( { - 0.2797} \right)\left( {108} \right)}}{{6 - 2}}}

{S_{yx}} = \sqrt {\frac{{91 - 106.785 + 30.3076}}{4}}

{S_{yx}} = \sqrt {\frac{{121.2076 - 106.785}}{4}}

{S_{yx}} = \sqrt {\frac{{14.4226}}{4}}

{S_{yx}} = \sqrt {3.6057}

{S_{yx}} = 1.8989






Post a Comment

Previous Post Next Post