Assignment # 01 MTH621 (Spring 2022) Due Date: June 07, 2022

 

Assignment # 01                         MTH621 (Spring 2022)

 

Maximum Marks:  20                                                                                   Due Date: June 07, 2022

DON’T MISS THESE: Important instructions before attempting the solution of this assignment:

       To solve this assignment, you should have good command over 1 - 10 lectures.

  • Try to get the concepts, consolidate your concepts and ideas from these questions which you learn in the 1 to 10 lectures.

       Upload assignments properly through LMS, No assignment will be accepted through email.

       Write your ID on the top of your solution file.

  • Don’t use colorful back grounds in your solution files.
  • Use Math Type or Equation Editor Etc. for mathematical symbols.
  • You should remember that if we found the solution files of some students are same then we will reward zero marks to all those students.
  • Try to make solution by yourself and protect your work from other students, otherwise you and the student who send same solution file as you will be given zero marks.
  • Also remember that you are supposed to submit your assignment in Word format any other like scan images, etc. will not be accepted and we will give zero marks correspond to these assignments.

Q1.

      Prove or disprove that the complement of integers {Z^c} in R is an open set.

SOLUTION:-

      A set U \subset R is open if and only if for every x \in U , there exists some \in  > 0 such that \left( {x -  \in ,x +  \in } \right) is a subset of U.

For U = Z this is clearly not the case:

Take

       x = 0

      Take any  

               { \in  > 0} 

Then,

          \min \left\{ {x + \frac{ \in }{2},x + \frac{1}{2}} \right\} is an element of \left( {x -  \in ,x +  \in } \right), but it is not an element of Z.

Therefore, 

\left( {x -  \in ,x +  \in } \right) is not a subset of Z for any value of  \in.

Therefore,

Z is not open.

If Z is not open then {Z^c} is open.

Hence,

             Prove that the complement of integers {Z^c} in R is an open set.

Q2.

Show that the sequence \left\{ {\sqrt {n + 1}  - \sqrt n } \right\}_{n = 1}^\infty  is a null sequence.

Solution:-

Consider the function f(n) defined by

        f\left( n \right) = \sqrt {n + 1}  - \sqrt n

First, we ues multiply by the numerator and denominator f\left( n \right) = \sqrt {n + 1}  + \sqrt n.

         f\left( n \right) = \sqrt {n + 1}  - \sqrt n  \times \frac{{\sqrt {n + 1}  + \sqrt n }}{{\sqrt {n + 1}  + \sqrt n }}

        f\left( n \right) = \frac{{\left( {\sqrt {n + 1}  - \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }}

        f\left( n \right) = \frac{{{{\left( {\sqrt {n + 1} } \right)}^2} - {{\left( {\sqrt n } \right)}^2}}}{{\sqrt {n + 1}  + \sqrt n }}

          f\left( n \right) = \frac{{n + 1 - n}}{{\sqrt {n + 1}  + \sqrt n }}

          f\left( n \right) = \frac{1}{{2\sqrt n }}

Then,

        Since \sqrt {n + 1}  > \sqrt n we have.

         1 < \frac{1}{{\sqrt {n + 1}  + \sqrt n }} < \frac{1}{{\sqrt n  + \sqrt n }}

         1 < \frac{1}{{\sqrt {n + 1}  + \sqrt n }} < \frac{1}{{2\sqrt n }}

Since, 

   We know from a property of Apostol that:

{\lim }\limits_{n \to \infty } \frac{1}{{{n^\alpha }}} = 0,\,\,\,\,\,\,\,\,\,\left( {\alpha  > 0} \right)

 {\lim }\limits_{n \to \infty } \frac{1}{{2\sqrt n }} = 0

{\lim }\limits_{n \to \infty } f\left( n \right) = 0

Prove that:-

             The sequence \left\{ {\sqrt {n + 1}  - \sqrt n } \right\}_{n = 1}^\infty is a null sequence.


2 Comments

Previous Post Next Post