MTH104 Assignment no. 1 Spring 2022 Due Date 21 - 6 - 2022

 ASSIGNMENT NO. 1

MTH104                SPRING 2022

DUE DATE: 21 – 6 – 2022

QUESTION NO. 1:-

Let S = {1, 2, 3, …., 19, 20}. Let \equiv  

be the equivalence relation on S defined by the congruence modulo 7.                                               

(a)  Find the quotient set S/≡.

(b) Find a system of equivalence class representatives consisting of even integers.

SOLUTION:-

(a)  Find the quotient set S/≡.

Suppose that R is an equivalence relation on a set S. For each a in S, let [a] denote the set of elements of S to which a is related under R; that is,

                                                         \left[ a \right] = \left\{ {x:\left( {a,x} \right) \in R} \right\}

We call [a] the equivalence class of an in S under R. the collection of all such equivalence classes is denoted by S/R, that is.

                                                     S/R = \left\{ {\left[ a \right]:a \in S} \right\}

It is called the quotient set of S by R.

a = b (module m)

     m/a-b             or           m/b-a

       a = b (module 7)

[\left( {1,1} \right),\left( {1,8} \right),\left( {1,15} \right),\left( {2,2} \right),\left( {2,9} \right),\left( {2,16} \right),\left( {3,3} \right),\left( {3,10} \right),\left( {3,17} \right),\left( {4,4} \right),\left( {4,11} \right),\left( {4,18} \right),\left( {5,5} \right),\left( {5,12} \right),\left( {5,19} \right),\left( {6,6} \right),\left( {6,13} \right),\left( {6,20} \right),\left( {7,7} \right),\left( {7,14} \right),\left( {8,1} \right),\left( {8,8} \right),\left( {8,15} \right),\left( {9,2} \right),\left( {9,9} \right),\left( {9,16} \right),\left( {10,3} \right),\left( {10,10} \right),\left( {10,17} \right),\left( {11,4} \right),\left( {11,11} \right),\left( {11,18} \right),\left( {12,5} \right),\left( {12,12} \right),\left( {12,19} \right),\left( {13,6} \right),\left( {13,13} \right),\left( {13,19} \right),\left( {14,7} \right),\left( {14,14} \right),\left( {15,1} \right),\left( {15,8} \right),\left( {15,15} \right),\left( {16,2} \right),\left( {14,14} \right),\left( {15,1} \right),\left( {15,8} \right),\left( {15,15} \right),\left( {16,2} \right),\left( {16,9} \right),\left( {17,3} \right),\left( {17,10} \right),\left( {17,17} \right),\left( {18,4} \right),\left( {18,11} \right),\left( {18,18} \right),\left( {19,5} \right),\left( {19,12} \right),\left( {19,19} \right),\left( {20,6} \right),\left( {20,13} \right)\,\,and\,\left( {20,20} \right)]

Equivalence relation on a set S:

                     \left[ a \right] = \left\{ {x:\left( {a,x} \right) \in R} \right\}

[1] = {1, 8 and 15}

[2] = {2, 9 and 16}

[3] = {3, 10 and 17}

[4] = {4, 11 and 18}

[5] = {5, 12 and 19}

[6] = {6, 13 and 20}

[7] = {7 and 14}

[8] = {1}

Quotient set S/≡

S/R = \left\{ {\left[ a \right]:a \in S} \right\}

S/R = {[1], [2], [3], [4], [5], [6], [7], [8]}

Or

S/R = {{1, 8 and 15}, {2, 9 and 16}, {3, 10 and 17}, {4, 11 and 18}, {5, 12 and 19}, {6, 13 and 20}, {7 and 14}, {1}}

 (b)   (a)    Find a system of equivalence class representatives consisting of even integers.

[1] = {8}

[2] = {2 and 16}

[3] = {10}

[4] = {4 and 18}

[5] = {12}

[6] = {6 and 20}

[7] = {14}

{2, 4, 6, 8, 10, 12, 14}        or        {2, 6, 8, 10, 12, 14, 18}        or        {2, 4, 8, 10, 12, 14, 20}         or      

{2, 8, 10, 12, 14, 18, 20}        or        {4, 6, 8, 10, 12, 14, 16}             or   

  {6, 8, 10, 12, 14, 16, 18}     and    {8, 10, 12, 14, 16, 18, 20}  

1 Comments

Previous Post Next Post