Assignment # 1 MTH 631 Spring 2022 Maximum Marks: 20 Due Date: 13 June, 2022

Question no. 1

SOLUTION:-

Point wise convergence:

                              Suppose that {Fn} is a sequence of function on D and the sequence of values { Fn (x)} converges for each x in some subset S of D. Then we say that {Fn} converges point wise on S to the limit function F, defined by

                                     F\left( x \right) =  {\lim }\limits_{x \to \infty } {F_n}(x),\,\,\,\,\,\,x \in S.

Uniform convergence:

                                     A sequence {Fn} of functions defined on a set S converges uniformly to the limit function F on S if

                  {\lim }\limits_{x \to \infty } \left\| {{F_n} - F} \right\|s = 0

Thus, {Fn} converges uniformly to F on S if for each  \in  > 0 thereis an integer N such that

                                       \left\| {{F_n} - F} \right\|s <  \in \,\,\,\,\,if\,\,\,n \ge N.

Point wise convergence:

Given that:-

Function:

                   {f_n}\left( x \right) = \frac{1}{{nx}} - \frac{{nx}}{{nx + 1}} 

So, 

Applying both side limit.

                       {\lim }\limits_{n \to \infty } {f_n}\left( x \right) =  {\lim }\limits_{n \to \infty } \left[ {\frac{1}{{nx}} - \frac{{nx}}{{nx + 1}}} \right]

                      {\lim }\limits_{n \to \infty } {f_n}\left( x \right) =  {\lim }\limits_{n \to \infty } \frac{1}{{nx}} -  {\lim }\limits_{n \to \infty } \frac{{nx}}{{nx + 1}}

                        {\lim }\limits_{n \to \infty } {f_n}\left( x \right) = \frac{1}{\infty } -  {\lim }\limits_{n \to \infty } \frac{{nx}}{{n\left[ {x + \frac{1}{n}} \right]}}

                          {\lim }\limits_{n \to \infty } {f_n}\left( x \right) = 0 -  {\lim }\limits_{n \to \infty } \frac{x}{{\left[ {x + \frac{1}{n}} \right]}}

                           {\lim }\limits_{n \to \infty } {f_n}\left( x \right) = \frac{x}{{\left[ {x + \frac{1}{\infty }} \right]}}

                            {\lim }\limits_{n \to \infty } {f_n}\left( x \right) = 0 - \frac{x}{{\left[ {x + 0} \right]}}

                           {\lim }\limits_{n \to \infty } {f_n}\left( x \right) = 0 - \frac{x}{x}

                          {\lim }\limits_{n \to \infty } {f_n}\left( x \right) = 0 - 1

                             {\lim }\limits_{n \to \infty } {f_n}\left( x \right) =  - 1

Hence,

           Sequence {Fn} converges point wise to  for (0,1)  \in R

A sequence {Fn} of a function define on a set S converges uniformly to the limit function F on S if.

                    {\lim }\limits_{n \to \infty } \left\| {{F_n} - F} \right\|s = 0

So,

                      =  {\lim }\limits_{n \to \infty } \left\| {\frac{1}{{nx}} - \frac{{nx}}{{nx + 1}} + 1} \right\|

                        \begin{array}{l}
 =  - 1 + 1\\
 = 0
\end{array}

Hence,

So, {Fn} is uniformly converges.

SOLUTION:-

 Cauchy’s criterion for uniform convergence for series

                                                                                             A series of function \sum {f_n} defined on [a, b] converges uniformly on [a, b] if and only if for every  \in  > 0 and for all x \in \left[ {a,b} \right], there exist an integer N such that

         {f_{n + 1}}(x) + {f_{n + p}}(x)| <  \in ,\,\,\,n \ge N,p \ge 1.

Weierstrass’s test:

                                       A series of functions \sum {f_n} will converge uniformly and absolutely on [a, b] if there exists a convergent series \sum {M_n} of positive numbers such that for all x \in \left[ {a,b} \right]                                                        \left| {{f_n}(x)} \right| \le {M_n}\,\,for\,\,all\,\,n 

Now,

Given that:

  \sum {{u_n}} ,\,\,{u_n} = \frac{{{{( - 1)}^n}{{{\rm e}\nolimits} ^{ - 2nx}}}}{{4{n^2} - 1}}

Taking,

  {M_n} = \frac{1}{{4{n^2} - 1}}

\begin{array}{l}
Now,\\
\frac{{{{( - 1)}^n}{{{\rm e}\nolimits} ^{ - 2nx}}}}{{4{n^2} - 1}} \le \frac{1}{{4{n^2} - 1}}
\end{array}

Hence,

The given series is convergence.


                            

  


Post a Comment

Previous Post Next Post